The canonical equation of adaptive dynamics for Mendelian diploids and haplo-diploids.
نویسندگان
چکیده
One of the powerful tools of adaptive dynamics is its so-called canonical equation (CE), a differential equation describing how the prevailing trait vector changes over evolutionary time. The derivation of the CE is based on two simplifying assumptions, separation of population dynamical and mutational time scales and small mutational steps. (It may appear that these two conditions rarely go together. However, for small step sizes the time-scale separation need not be very strict.) The CE was derived in 1996, with mathematical rigour being added in 2003. Both papers consider only well-mixed clonal populations with the simplest possible life histories. In 2008, the CE's reach was heuristically extended to locally well-mixed populations with general life histories. We, again heuristically, extend it further to Mendelian diploids and haplo-diploids. Away from strict time-scale separation the CE does an even better approximation job in the Mendelian than in the clonal case owing to gene substitutions occurring effectively in parallel, which obviates slowing down by clonal interference.
منابع مشابه
A rigorous model study of the adaptive dynamics of Mendelian diploids.
Adaptive dynamics (AD) so far has been put on a rigorous footing only for clonal inheritance. We extend this to sexually reproducing diploids, although admittedly still under the restriction of an unstructured population with Lotka-Volterra-like dynamics and single locus genetics (as in Kimura's in Proc Natl Acad Sci USA 54: 731-736, 1965 infinite allele model). We prove under the usual smoothn...
متن کاملThe stationary distribution of a continuously varying strategy in a class-structured population under mutation-selection-drift balance.
Many traits and/or strategies expressed by organisms are quantitative phenotypes. Because populations are of finite size and genomes are subject to mutations, these continuously varying phenotypes are under the joint pressure of mutation, natural selection and random genetic drift. This article derives the stationary distribution for such a phenotype under a mutation-selection-drift balance in ...
متن کاملHeterozygote Advantage Is a Common Outcome of Adaptation in Saccharomyces cerevisiae.
Adaptation in diploids is predicted to proceed via mutations that are at least partially dominant in fitness. Recently, we argued that many adaptive mutations might also be commonly overdominant in fitness. Natural (directional) selection acting on overdominant mutations should drive them into the population but then, instead of bringing them to fixation, should maintain them as balanced polymo...
متن کاملGENETICS | INVESTIGATION Empirical evidence for heterozygote advantage in adapting diploid populations of Saccharomyces cerevisiae
Adaptation in diploids is predicted to proceed via mutations that are at least partially dominant in fitness. Recently we argued that many adaptive mutations might also be commonly overdominant in fitness. Natural (directional) selection acting on overdominant mutations should drive them into the population but then, instead of bringing them to fixation, should maintain them as balanced polymor...
متن کاملMutational effects depend on ploidy level: all else is not equal.
Ploidy is predicted to influence adaptation directly, yet whether single mutations behave the same in different ploidy backgrounds has not been well studied. It has often been assumed theoretically that aside from dominance, selective parameters do not differ between cells of varying ploidy. Using the budding yeast Saccharomyces cerevisiae, I compared the effect size of 20 adaptive mutations in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Interface focus
دوره 3 6 شماره
صفحات -
تاریخ انتشار 2013